Chaos in the Swinging Atwood Machine (SAM)

نویسنده

  • Nathaniel Adams
چکیده

A normal Atwood Machine is composed of two masses connected with a string, hanging from pulleys, (see figure 1). This system is often used to teach Newton’s laws of motion due to its simplicity. However, it is not very interesting to study beyond that. When the two masses are not equal, the heavier one will accelerate down and the other will accelerate up at the same rate. When the masses are equal, there is no acceleration. In order to make the system more interesting, it is possible to introduce a second degree of freedom, giving rise to the Swinging Atwood Machine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motions of a swinging Atwood’s machine

2014 The Lagrangian L03BC (r, 03B8) = 1/2(1 + 03BC)r2 + 1 2r203B82r(03BC cos 03B8) with 1 03BC ~ 3.1 is studied using a surface of section map. Regular and chaotic behaviour is exhibited. The numerical evidence suggests the motion is integrable for 03BC = 3. Integrability is proved by explicitly exhibiting a first integral. J. Physique 46 (1985) 1495-1500 SEPTEMBRE 1985, Classification Physics ...

متن کامل

Periodic orbits of the integrable swinging Atwood's machine

We identify all the periodic orbits of the integrable swinging Atwood's machine by calculating the rotation number of each orbit on its invariant tori in phase space, and also providing explicit formulas for the initial conditions needed to generate each orbit.

متن کامل

Periodic Orbits of the Integrable Swinging Atwood's Machine Typeset Using Revt E X

(a) (b) (c) (d) Abstract We identify all the periodic orbits of the integrable swinging Atwood's machine by calculating the rotation number of each orbit on its invariant tori in phase space, and also providing explicit formulas for the initial conditions needed to generate each orbit.

متن کامل

Swinging Types At Work

We present a number of swinging specifications with visible and/or hidden components, such as lists, sets, bags, maps, monads, streams, trees, graphs, processes, nets, classes, languages, parsers,... They provide more or less worked-out case studies and shall allow the reader to figure out the integrative power of the swinging type approach with respect to various specification and proof formal...

متن کامل

Teardrop and heart orbits of a swinging Atwood’s Machine

An exact solution is presented for a swinging Atwood’s machine. This teardrop-heart orbit is constructed using Hamilton-Jacobi theory. The example nicely illustrates the utility of the Hamilton-Jacobi method for finding solutions to nonlinear mechanical systems when more elementary techniques fail. PACS numbers: 02.30 — 03.20 Date: 14 February 1993 To be submitted to: The American Journal of Ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015